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Problem 1

Show that for a single particle with constant mass the equation of motion implies the following
differential equation for the kinetic energy:
dr
Z_F.
dt v

while if the mass varies with time the corresponding equation is

d(mT)
dt

=F.p.

Solution 1
If mass is constant, the equation of motion is:
F=mv (1.1)

Taking dot product of Eq. (1.1) with v, we get:

_d lmv2 _|dT
Cdt \ 2 | dt

If mass varies with time, the equation of motion is:

F=p (1.2)

Taking dot product of Eq. (1.2) with p, we get:

F.-p=p-p
= %(mv) - mv
= m%]\vw + mQ% v
_ % (;m%z) _ d(T;tT)

Problem 2

Prove that the magnitude R of the position vector for the center of mass from an arbitrary origin

is given by the equation
1
2 2 2 2
M*R*=M E T~ 5 E 'mimjrij
i i#]
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Solution 2

The position vector of center of mass is given by:

= % > mir; (2.1)

Taking dot product of Eq. (2.1) with itself, we get:

Z mir? + Z Mim;T; - T (2.2)
i

i#]

1
Note that r; - rj = 5 —(r? + 7’ - r”) Hence,

Z m;m;r; - rj = % Zmimjrzz + Z mgmy; ]2 - Zm’imj’r?j
i#j | i i i#j

I et o e - Y

| J i#j i J#i i#]
= % 2 Z m; Z miTZ-Z — Z miijin
| i i i
=Y S - %Zmimﬂgj (2.3)
J 1#] i#]

Also, note that:
Zm? 2 — ijmirg = Z m; Z mgr? (2.4)
i i= i =

Using Egs. (2.3) and (2.4) in Eq. (2.2), we get:

R2:# Zm]Zmzr +Zm]2mzr - Zmlm] zg
J i#j Z#J
:% Zm]ZmZT - Zmzmj Tij
Z#J
_ % Mzmﬁg _ igmmﬂ] (2.5)
L 7 17]

Hence using Eq. (2.5), we have:

1
M?R? = ]\/.I'Z:m,m2 —3 ;mzm]r%
i 7]
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Problem 3

Suppose a system of two particles is known to obey the equations of motion, Egs. (1.22) and (1.26).
From the equations of the motion of the individual particles show that the internal forces between
particles satisfy both the weak and the strong laws of action and reaction. The argument may
be generalized to a system with arbitrary number of particles, thus proving the converse of the
arguments leading to Egs. (1.22) and (1.26).

Remark: By Egs. (1.22) and (1.26) of the book Classical Mechanics, the author(s) is/are referring

to
2
M% =Y FY=F and (3.1)
dL
o = N respectively. (3.2)

Solution 3

Consider a system of two particles with mass m; and position vector r; where i € {1,2}. The
equation of motion for first particle is:

Foi + F\ = my# (3.3)

Similarly, the equation of motion for second particle is:
Fiy + F = myf, (3.4)

Adding Egs. (3.3) and (3.4), we get:
Fo1 + Fio + Fﬁe) + Fée) = mii + mai
= MR (3.5)
miry + meora
my + ma

Fo1 +F12=0

- )

Hence the internal forces between particles satisfy the weak law of action and reaction.

where M = (m; +mz) and R = . Using Eq. (3.1) in Eq. (3.5), we have:

Now, consider the cross product of r; with Eq. (3.3) and ro with Eq. (3.4).

r; X Fo; +1r; X Fge) =r] X mt (3.7)

ro X Fig 4+ 12 X Fge)

=TI X mg.f'g (38)
Adding Eqs. (3.7 ) and (3.8) and noting that V i € {1,2}, r; x F¥ = N and S"N!® = N© and
then using Eq. (3.2), we get:

r; X Fo; +r9 X Fio + L =11 X mf] + ro X moly (39)
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But L = Z %(I‘l X mlrl) = EI‘Z X myT; + Zl‘i X mut; = Zri X mt;, V1€ {1, 2} Using this fact
in Eq. (3.9), we have:
ri XxFo; +1r93 xFi19=0

= (ri —ry) xFo =0 and (ro—r1) xFi12=0 [Using Eq. (3.6)]
= rig X For =0 and ro1 X F1a =0 [Denoting (r; — rj) as ryj]

Sincer;; # 0 and F;; # 0, Vi,j € {1,2} and ¢ # j, we must have F;; || r;;, V4,5 € {1,2} and i # j.
Hence the internal forces between particles satisfy the strong law of action and reaction too.

Now, consider a system with arbitrary number of particles. The equation of motion for any particle
is:

Fii+F =mi;  Vijandi#j (3.10)

Eq. (3.10) represents as many equations of motion as there are particles in the system, one each for
each particle. Summing all these equations, we get:

Z Fji + Z F,L(-e) = Z m;t; (311)

i#j i
= Y F;+) FY=MR (3.12)
i#j i
> MiT;
where M =Y m; and R = — . Note that (3.12) can be written as:
i >_m;
(2
1 ..
5 2 (Fii +Fig) + > Fl° = MR (3.13)
i#] i

If the internal forces between the particles follow the weak law of action and reaction, i.e.,
Fj; = —F;;,Vi,j and ¢ # j, we have using Eq. (3.13),

SR = MR

thus proving the converse of the generalized arguments leading to Eq. (3.1).

Now, consider the cross product of r; with Eq. (3.11):
Zri X Fji + Z r; X Fz(e) = Zri X mzrz (314)
i#] i i

But Z I‘iXmZ'.I.'Z‘ = Z f'ixmii'i+z rixmii‘i = Z %(rzxmlr,) = L and Z rixmii‘i = Z NEE) = N(e).

(2

7 7 (2
Using these in Eq. (3.14), we have:

D (i xFi) +NO = L (3.15)
i#]
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Note that Eq. (3.15) is written for 4" particle. Similarly we can write the equation for 5" particle
by changing the indices as follows:

Z(I‘j X Fij) + N(e) = L (3'16)
J#i
Adding Egs. (3.15) and (3.16), we get:
Z(I‘i X Fji+rj X Fl]) + QN(E) = QL (317)
i#]

If the internal forces between the particles follow the strong law of action and reaction, i.e.,
F;j = —Fj and F;; || ryj, Vi,j and ¢ # j, Eq. (3.17) can be written in the following ways:

Z[(I‘Z — I‘j) X Fﬂ] + 2N(e) = 2L and Z[(I‘j — I‘i) X Fzg] + QN(e) = 2L

i#] J#1
= Z(rij x Fji) + ON(®) = 2f, and Z(rﬂ x Fi;) + INE©) = of, [Denoting (r; — rj) as ryj]
i#] J#
= — Z(I‘ji X Fﬂ) + 2N(€) = 2L and — Z(I‘ij X Fzg) + 2N(€) = 2L [Using rjj = _rji]
i#] J#i

= [NY =1L [ Fij | vsg]

Hence we have proved the converse of the generalized arguments leading to Eq. (3.2).

Problem 4

The equations of constraint for the rolling disk, Eqs. (1.39), are special cases of general linear
differential equations of constraint of the form

Zgi(xlv ceey CEn)d.TZ =0.
i=1

A constraint condition of this type is holonomic only if an integrating function f(z1,...,z,) can be
found that turns it into an exact differential. Clearly the function must be such that

O(fgi) _ 0(f95)

ox 7 8.7)@

for all i # j. Show that no such integrating factor can be found for either of Eqgs. (1.39).
Remark: By Eqgs. (1.39) of the book Classical Mechanics, the author(s) is/are reffering to

dx —asinfd¢ =0 and (4.1)
dy + acosfdp =0 (4.2)
Solution 4

A rigid disk in three dimensions has six degrees of freedom. Constraining it to move on a plane and
requiring it’s plane to be always vertical are both holonomic constraints as they can be expressed
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in the form f(ry,ro,rs,...,t) =0 as follows:
z—2z,=0, where z, is a constant
n, =0, where n, is the component of disk’s unit normal vector parallel to z-axis

These constraints thus reduce the degrees of freedom of the system to four. The system can thus
be described by the coordinates (x,y, 6, ¢), where (x,y) denotes the disk’s center; 6 represents its
orientation in the plane; and ¢ indicates the rotation about its axis. The constraint conditions given
by Egs. (4.1) and (4.2), in general, can be written as:

gzdx + gydy + godt + g4dd = 0

In Eq. (4.1), g = 1,9y = 0,99 = 0,94 = —asinf. We want to find f(z,y,0, ¢) such that it satisfies
<4> = 6 conditions as follows:

2
o) o), g
8(£gz) _ 8(559) N % —0 (4.3)
3(§zx) _ 3(§g¢) N g(J; _ _asmegi
o) 0w, o
8(559) _ a(£§¢) ~ 0= —asin@?)“;;
8(af;9) . 8%;“’) ~ 0= —asinegg —af cosd (4.4)

Using Eq. (4.3) in Eq. (4.4), we conclude that there is no non-trivial integrating factor f unless
6 = m/2 throughout. Hence Eq. (4.1) cannot be written as an exact differential unless 0 = 7/2
throughout.

If & = 7w/2 throughout, the disk is rolling parallel to z-axis; Eqgs. (4.1) and (4.2) can then be
integrated and the resulting relation between the coordinates (due to the constraint that the disk
rolls without slipping) will be:

T — 2o = a(p— ¢o), where z, and ¢, are constants.
Y— Yo =0, where g, is a constant.
which are holonomic equations of constraint. In this case, the degrees of freedom of the system
further reduce by three (as we now have three more holonomic constraint equations, one each in

0,z and y). Hence we need just one generalized coordinate (a simple choice will be ¢) to describe
the system when 6 is 7/2 throughout.

But there doesn’t exist any general integrating factor f such that Eq. (4.1) reduces to exact differ-
ential and hence Eq. (4.1) is nonholonomic differential constraint condition.

In Eq. (4.2), g = 0,9y = 1,99 = 0,94 = acosf. We want to find f(z,y, 0, ¢) such that it satisfies
(3) = 6 conditions as follows:
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a%$>:ag?> L oY

o) _om)

ain:ag?> = 0=acoss)

o ggy) _ 8(559) N gg —0 (4.5)
a(afiy) _ 6(5;@ N Z{; — ueos 925

8(5;9) _ 3((J;g¢>) = 0=acos 0% —afsinf (4.6)

Using Eq. (4.5) in Eq. (4.6), we conclude that there is no non-trivial integrating factor f unless § = 0
throughout. Hence Eq. (4.2) cannot be written as an exact differential unless = 0 throughout.

If # = 0, the disk is rolling parallel to y-axis; Eqgs. (4.1) and (4.2) can then be integrated and the
resulting relation between the coordinates (due to the constraint that the disk is rolling without
slipping) will be:

Y— Yo =—a(d — o), where y, and ¢, are constants.

r—x9=0, where x( is a constant.

which are holonomic equations of constraint. In this case too, the degrees of freedom of the system
further reduce by three (as we now have three more holonomic constraint equation, one each in 6, z
and y). Hence we need just one generalized coordinate (a simple choice will be ¢) to describe the
system when 6 = 0 throughout.

But there doesn’t exist any general integrating factor f such that Eq. (4.2) reduces to exact differ-
ential and hence Eq. (4.2) is nonholonomic differential constraint condition.

Problem 5

Two wheels of radius a are mounted on the ends of a common axle of length b such that the wheels
rotate independently. The whole combination rolls without slipping on a plane. Show that there
are two nonholonomic equations of constraint,

cos fdx + sinfdy = 0
1 /
sin Odx — cos Ody = §a(d¢ +do ),

(where 6, ¢, ¢ have meanings similar to those in the problem of a single vertical disk, and (x,y) are
the coordinates of a point on the axle midway between the two wheels) and one holonomic equation
of constraint,

0=C—~3(0-9).

where C is a constant.
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Solution 5

Wheel 1 Wheel 2

X

Figure 1: A schematic of the Problem 5

A schematic of the Problem 5 is shown in Figure 1.Two rigid wheels in three dimensions has 12
degrees of freedom. As in the case of a single disk of Problem 4, we have the following holonomic
equations of constraints:

21 = m, where m is a constant
29 = M, where m is a constant
ng =0, where n,, is the component of wheel 1’s unit normal vector parallel to z-axis
ny =0, where n,, is the component of wheel 2’s unit normal vector parallel to z-axis

Additionaly, the wheels are mounted on an axle of length b, which can be described in the form of
holonomic constraint equation as:

V(@a —21)? + (y2 — 31)? = b,

where (z1,y1) and (z2,y2) are the coordinates of the centers of wheel 1 and wheel 2 respectively.

Hence the degrees of freedom of the system reduces to seven. We will thus use (x1,y1,6,¢) and
(z2,y2,0, ¢') to describe wheel 1 and wheel 2 respectively, where (z1,y1) and (x2,y2) are the centers
of the respective wheels; 6 is the angle between z-axis and the common axle; ¢ and ¢ are the angles
describing the rotation of the wheels about their respective axis of rotation. Since the wheels are
constrained to rolling independently on a plane without slipping, we have the following constraint
conditions:

dx1 = asin0dgo
dy1 = —acosfdo

i = agsinf (5.1)
(5.2)
dzy = asin0de (5.3)
(5.4)

i = —ag cos

i9 = a¢ sind

Ll

o = —a¢’ cosf dys = —a cos 0d¢’
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Egs. (5.1)—(5.4) are nonholomic constraint equations (These are the same equations we proved to
be nonholonomic for a single disk in Problem 4; we just have 2 sets of those equations as we now
have two wheels in Problem 5).

It is given that (x,y) are the coordinates of a point on the axle midway between the two wheels.
Hence we have (z,y) = 5(21 + 22,91 + y2) and using Egs. (5.1)~(5.4), we can write dz and dy as:

1 1 /

do = (doy +drz) = dr= jasind(dg +do) (5.5)
1 1 '

dy = 5(dy +dy) = dy=—acos0(do +do) (5.6)

Multiplying Eq. (5.5) by cos# and Eq. (5.6) by sin @ and then adding, we get:

‘cos Odx + sin 0dy = 0‘ (5.7)

Multiplying Eq. (5.5) by sin 6 and Eq. (5.6) by cos § and then subtracting the latter from the former,
we get:

1 /
sin fdx — cos Ody = §a(d¢ +do) (5.8)

Performing a similar analysis as done in Problem 5, it is easy to prove that no integrating factor
exists for Egs. (5.7) and (5.8). Hence Egs. (5.7) and (5.8) are non-holonomic equations of constraint.

From Figure 1, we can write:
T9 — 21 = bcosl
= @ —d1 = —bfsind
asinf(¢ — ¢) = —blsin b (Using Eqgs.(5.3) and (5.1))
. a - .
= 0=—2( -9

4

= 0=0C— %(qﬁl — ) (C is a constant of integration) (5.9)

Eq. (5.9) is a holonomic constraint equation.

Problem 6

A particle moves in the xy plane under the constraint that its velocity vector is always directed
towards a point on the = axis whose abscissa is some given function of time f(¢). Show that for
f(t) differentiable, but otherwise arbitrary, the constraint is nonholonomic.

Solution 6
Let the position vector r, of the particle with respect to some arbitrary origin O be:

v, = 2i+y) (6.1)

11
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The position vector r, of the point on z-axis where the particle’s velocity vector is always directed,
with respect to the origin O, is given by:

rp = f(t)i (6.2)

The position vector r of the point on z-axis where the particle’s velocity is always directed, with
respect to the particle, is thus given by:

r=r,—r,
=(f(t) —x)i—yj [Using Eqgs. (6.1) and (6.2)] (6.3)
Differentiating Eq. (6.1) with respect to time, the velocity vector v of the particle is given by:
v =i+ (6.4)

Note that v || r. Hence, v = Ar, where A is a constant. Using Eqgs. (6.3) and (6.4), this reduces to
the following equation:

T Y
Y o [yda+ (- f(t)dy =0 (6.5)
0 -x [vdo + o = /)y = 0]
Let us analyze whether Eq. (6.5) is holonomic or not. We want to find an integrating factor h(z,y)
on multiplying which Eq. (6.5) reduces to an exact differential. Hence, we want:

O(hy) _ O(hz — hf(1)))

oy Ox
oh oh
= g =k - SO
Ox
= y@ =z — f(1)
= r = f(t) [ x is independent of y] (6.6)

Using Eq. (6.6) in Eq. (6.5), we find that either do = 0 = = is a constant, which is inconsistent
with Eq. (6.6); or y =0 = r = 0 [Using Eq. (6.3) in Eq. (6.4)] and since v = Ar (X is a constant)
= v =0= i = 0 (since 7 and j are linearly independent) = f(t) is a constant which is inconsistent
since f is given to be a function of ¢; or if both y and dx are zero, we will encounter the same
inconsistency, i.e., x = f(t) is a constant.

Hence, there doesn’t exist any integrating function h(z,y) on multiplying which Eq. (6.5) reduces
to an exact differential. Therefore, Eq. (6.5) is non-integrable and hence, non-holonomic equation
of constraint.

Problem 7

Show that Lagrange’s equations in the form of Egs. (1.53) can also be written as
or _oT
2 =Q
8(]]‘ aq]'

These are sometimes known as the Nielsen form of the Lagrange equations.
Remark: By Eqgs. (1.53) of the book Classical Mechanics, the author(s) is/are referring to

d (0T oT
i (i) o, Y

12
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Solution 7

Let T'=T(q,q,t). Then we have:

: 8T ar
_ a 2
E: G+ (7.2)

Using Eq. (7.2), we can write the following:

Z ) 282 .+8T+82
aqj aq]aqlqz 94,04, " 0q; 90t

N or al_z T .y °T 82T
04,05 2 33,00, T ;01

a(jj Oqj p
—~ 0; \9q; ) " 4= 0q; \9q; ) 9t \dq;

Using Eq. (7.3) in Eq. (7.1), we get:

which is the required Nielsen form of the Lagrange equations.

Problem 8

If L is a Lagrangian for a system of n degrees of freedom satisfying Lagrange’s equations, show by
direct substitution that

dF(q1,. .., qn,t)

L' =1
+ dt

(8.1)

also satisfies Lagrange’s equations where F' is any arbitrary, but differentiable, function of its argu-
ments.

Solution 8

Note that
dF oF oF
=S i+ = 2
dt p (9qiq + 8t <8 )
Using Egs. (8.1) and (8.2), we have:
oL O*F a2F
g q 8.3
8qj 0q; Z 8q]6ql qu(?t (83)

13
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Again using Eq. (8.1) and (8.2), we have:

oL’ _ oL oF
6%‘ aqj aq]'

d (o _d (oL d (oF 5
dt 8(]] N dt 86_[] dt 8(]]' ’
Rewriting Eq. (8.4) after expanding the second term on its right hand side using chain rule, we get:
d (oL _ Z O°F . OF
dt \ d¢; 8q] 0¢i0q; " 8t0Qj
d (oL O*F 62F
— | = G 8.5
R (aqj> <8q]> Z 9q;00: % T g0t (8:5)
Subtracting Eq. (8.3) from Eq. (8.5), we get:
d (oL'\ oL d (0L ?F . O’F 0°F ; O°F
i\ aer —.=(.)+Z 90T B0 Z .
q; Og;  dt \ 0¢; - 0q;0q; 8q38t aqj (9q]8qZ 6q]8t

d (0L oL
= (8%) - 87(]] =0 (or Q; if non-conservative forces are present)

Hence, if L satisfies Lagrange’s equations then L, given by Eq. (8.1), also satisfies Lagrange’s
equations.

Problem 9

The electromagnetic field is invariant under a gauge transformation of the scalar and vector potential
given by
1
A— A+ fvw(r,t),

181#

¢5—>¢—*7

where ¢ is arbitrary (but differentiable). What effect does this gauge transformation have on the
Lagrangian of the particle moving in the electromagnetic field? Is the motion affected?

Solution 9

The initial Lagrangian is given by:

1
L= im(az2 + 92+ %) —qp+qAv (9.1)

14
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On performing the given gauge transformation, the Lagrangian transforms to the following :

’

1 i ’
L =-m(@2+9°+%%) —qp +qA v

2
_1 .2 .9 2\ g@i q
— 2m(:13 +9°+27) —qo+ Bt +qAv+ cw’(”)"’
9%, 0w, v, OV )
=L+ - <3xx+ ayy—l- azz—i— 8t> [Using Eq. (9.1)]
_ d rq
| (evten) 02)

Eq. (9.2) is of the same form as Eq. (8.1). Using the result of the Problem 8, the motion is thus not
affected by performing the given gauge transformation.

Problem 10

Let q1,-...,qn be a set of independent generalized coordinates for a system of n degrees of freedom,
with a Lagrangian L(q,q,t). Suppose we transform to another set of independent coordinates
$1,...,S8p, by means of transformation equations

¢ = qi(81,- -+, 8n, 1), 1=1,...,n.

(Such a transformation is called a point transformation.) Show that if the Lagrangian function is
expressed as a function of s;,5;, and ¢ through the equations of transformation, then L satisfies
Lagrange’s equations with respect to the s coordinates:

d(oLy oL _
dt aéj 88]'_ '

In other words, the form of Lagrange’s equations is invariant under a point transformation.

Solution 10

We want to show that if L(q, ¢, t) satisfies Lagrange’s equations then L(s, 5,t) = L(q(s, 1), ¢;(s, $,t),1)
also satisfies Lagrange’s equations. Note that:

dq; 0q;

Ii = 5 — 10.1
q k s Sk ot ( )
9gi _ 0g;
= 10.2
= 38] 88]' ( 0 )
Now, using chain rule, we have the following:
0L _ §~ 0L 0,
08 - 0¢; 055
oL oL qu .
— = — Eq. (10.2
d (0L d (OL\ 0¢; OL d (0g;
R e Bl e == 10.
T <33j> 2 [dt (3%) 95, " 9g dt <35j>} (103)

7

15
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Again using chain rule, we have the following:

oL _Z [8[/ 8qi +8L8ql]

E)TSJ- B 87(12-8% 8ql aSj (10.4>

Using Eq. (10.1), we have the following:
a(jz a Gi 3 8 qi 8(11 . 0 8‘]@ o i
ds; Z 95,05, % T 050t Z Dsr <8s]> o <asj> T d

Using Eq. (10.5) in Eq. (10.4), we get:

<g§;> (10.5)

oL 0L 0q; OL d (dq;
5 = 7 10.6
0s; [8qi 0s; 2 dq; dt <85j)] (106)
Subtracting Eq. (10.6) from Eq. (10.3), we get:
4(OLY 0L _s~[d (01) L) o
dt 85]' 8.9]' N 2 dt 8% 8% 8Sj
=0 [ L(q, q,t) satisfies Lagrange’s equations]

Thus L(s, s,t) also satisfies Lagrange’s equations. Hence, the form of Lagrange’s equations is in-
variant under a point transformation.

Problem 11

Check whether the force F' = yzi + 2z + xyl% is conservative or not.

Solution 11

To check whether the force F' = yzi+zzj + xyl;: is conservative or not, we compute the curl:

L |iog K : : .
VXxF=\|0, 0 O;|=@—a)i—(y—y)j+(z—2k=0
yz zx xy

Since V x F' = (0 and the domain (R?) is simply connected, F' is conservative.

Problem 12

Compute the orbital period and orbital angular velocity of a satellite revolving around the Earth
at an altitude of 720 km. [Given: radius of Earth R=6000 km and g=9.83 m/s? ]

16
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Solution 12

We will assume a circular orbit. At the surface of the Earth, Newton’s law of Gravitation states:

GMm
RZ
= GM = gR?
= GM = 9.83 x (6 x 10%)2 m?3/s?
= GM = 3.54 x 10™ m?/s? (12.1)

:mg

At a distance 7 = R+ h = 6.72 x 10° m from the center of mass of the earth, Newton’s law of
Gravitation states:

GMm 9
= mrw
T2
GM 58.98 x 106 )
= w=\"3 = (6.72 x 1073 rad/s [Using Eq. (12.1)]
~|1.08 x 1073 rad/s (12.2)
We know:
-
w
2 x 3.14
=— ing Eq. (12.2
103103 ° [Using Eq. (12.2)]
~[5814.81 s
Problem 13

Rockets are propelled by the momentum reaction of the exhaust gases expelled from the tail. Since
these gases arise from the reaction of the fuels carried in the rocket, the mass of the rocket is not
constant, but decreases as the fuel is expended. Show that the equation of motion for a rocket
projected vertically upward in a uniform gravitational field, neglecting atmosheric friction, is

mdl__ /dm_
dt dt

where m is the mass of the rocket and v is the velocity of the escaping gases relative to the rocket.
Integrate this equation to obtain v as a function of m, assuming a constant time rate of loss of mass.
Show, for a rocket starting initially from rest, with v" equal to 2.1 km /s and a mass loss per second
equal to 1/60th of the initial mass, that in order to reach the escape velocity the ratio of the weight
of the fuel to the weight of the empty rocket must be almost 300!

Solution 13

We choose Earth as our frame of reference. At time ¢, let the mass of the rocket be m and its
velocity be vk. At time t + dt, the mass of the rocket reduces to m — dm and its velocity increases
to (v + dv)k after expelling gases with mass dm and with velocity —v.k with respect to the Earth.
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The change in momentum dp in time interval dt is thus:

dp. k = (m — dm)(v + dv)k — dm.vek — muk
= [mdv — dm(ve + v)]k

= dp. k = [mdv + v’ dm]k [0k = —(ve + v)k] (13.1)
The rate of change of momentum is:

dp » dv » rdm - .
dtk = Ek +v o —k [Using Eq. (13.1)] (13.2)

Using Newton’s second law, we have:

dp -
—k=F = —mgk
dt "
dv rdm
—_—=—v — — ing Eq. (13.2 13.
= m— v My [Using Eq. (13.2)] (13.3)
m
Eq. (13.3) can be rewritten using m = 5 o
dv = —>dm — gdt = —Zdm - idm (13.4)
m m m

Let myg and vp be the initial mass and the initial velocity of the rocket respectively. Assuming
m = 60m0, v = 2.1 km/s = 2100 m/s and ¢ = 9.83 m/s? to be constants and integrating
Eq. (13 4), we get:

v — g :v/ln‘@} —i—g(mo—m)
= v:2100><1n“+60><983<—1> [ o = 0]
mg
mo
= w=2100 x ln‘—‘ +580.8 ( - 1) (13.5)
m mo

The escape velocity from the surface of Earth is v = 11.2 km = 11200 m/s. Let r = 70, Substituting
these in Eq. (13.5), we get:

1
11200 = 2100 x In|r| + 589.8 ( - 1)

589.8
= —— —21001n|r| — 11789.8 =0 (13.6)
r

Eq. (13.6) is a transcendental equation and is to be numerically solved. I will implement the Newton-
Raphson root-finding algorithm in Python to solve Eq. (13.6) and will use matplotlib module to
depict the result graphically.

# importing modules through alias
import numpy as np
import matplotlib.pyplot as plt

18
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# Defining the function
def f(r):
return 589.8/r + 2100*np.log(r) - 11789.8

# Defining the function's derivative
def f_prime(r):
return -589.8/(rx**2) + 2100/r

# Newton-Raphson implementation
def newton_raphson(rO, tol, max_iter):
r = r0
for i in range(max_iter):
fr = f£(r)
fpr = f_prime(r)
if fpr == O:
raise ValueError ("Derivative is zero. No convergence.")
r_new = r - fr/fpr
if abs(r_new - r) < tol:
return r_new, i+1
r = r_new
raise ValueError ("Did not converge within max iterations")

# Initial guess

r0 = 300

solution, iterations = newton_raphson(r0,10**(-3) ,100)

print (f"Newton-Raphson solution: r is approximately {solution:.2f} (in {
iterations} iterations)")

# Creating array of r values and corresponding f values
r_vals = np.linspace(l, 500, 1000)
f_vals f(r_vals)

# Plotting the function

plt.figure(figsize=(10, 6))

plt.plot(r_vals, f_vals, label=r'$f(r)$', color='blue')

plt.scatter (solution,0, color='red',s=10,zorder=3, label=fr'Solution: r $§\
approx$ {solution:.2f}')

plt.xlabel('r')

plt.ylabel ('f(r)"')

plt.x1lim(1,500)

plt.title('Graphical depiction of the root')

plt.grid )

plt.legend ()

plt.show ()

From Figure 2, we have r = 7% =~ 274.01.

The fuel-to-empty rocket weight ratio to achieve the escape velocity is greater than or equal to

70 = — 1~ 273.01 (almost 3001).
m
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Graphical depiction of the root

fir)

e Solution: r = 274.01
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—10000 A
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r

Figure 2: Graphical depiction of the root of Eq. (13.6)

Problem 14

Two points of mass m are joined by a rigid weightless rod of length I, the center of which is
constrained to move on a circle of radius a. Express the kinetic energy in generalized coordinates.

Solution 14

Two particles in three dimensions have six degrees of freedom. The particles connected by a weight-
less rod of length [ reduces one degree of freedom and the center of rod (center of mass of the
system) constrained to move in a circle of radius a further reduces two degrees of freedom. Hence
the system has three degrees of freedom. We will use (7, 0, ¢) as our generalized coordinates, whose
geometric interpretations are detailed below.

The kinetic energy of the system will have two components - the kinetic energy of the center of
mass and summation of the kinetic energies of particles with respect to the center of mass. Let 1
be the angle representing the center of mass’ position on circle which is centered at the origin. The
position vector R, and hence the of the velocity vector v, of the center of mass of the system with
respect to the origin is given as:

R = a(cosni + sinn))
= v =R = an(—sinni + cos 7)) (14.1)

Using Eq. (14.1), the kinetic energy T} of the center of mass of the system is:
1 2.2
T = E(Zm)v -V =man (14.2)
Let us use (6, ¢), as in spherical coordinates, to describe the orientation of the particles with respect

to the rectangular coordinate system having origin at the center of mass of the system such that one
particle’s coordinates are reflection under origin of the other particle’s coordinates, i.e., r; = —rll,

20



Kishal Tandel Goldstein’s Classical Mechanics August 19, 2025

where I'/1 and r; are the position vectors of the particles with respect to the center of mass. Let 6,
¢ reprersent the first particle. Then by our choice of cordinate system, the second particle will be
represented by m — 6 and 7w 4+ ¢. We thus have:

r; = %(sin&cos ¢i 4 sin 0 sin ¢] + cos Ok) (14.3)
ry = —é(sin@cos $i + sin O sin ¢p] + cos Ok) (14.4)

Using Egs. (14.3) and (14.4), the corresponding velocity vectors V,1 and V/2 with respect to the center
of mass are:

/ / L., - . A . . IO .
v, =1 = 5[(9 cos 6 cos ¢ — ¢psin@sin )i + (0 cosfsin ¢ + Psinf cos ¢)j — 0 sin Ok] (14.5)

[(Bcosfcosp — psinfsineg)i + (0 cosOsin g + ¢sin b cos ¢)j — 0 sin Ok]| (14.6)

V2:r2:—§

Using Egs. (14.5) and (14.6), the summation 75 of the kinetic energies of particles about the center
of mass is given as:

’ / 1 / !
Ty = 3MV1 V1 + 3MV2 " Vy
I : . : ,
=5m- 21(92 cos® 0 cos® ¢ + ¢? sin? B sin ¢ + 6% cos? Osin? ¢ + ¢? sin’ § cos® ¢ 4 6% sin? 0)
2. . _
= mT [62 cos? B(cos? ¢ + sin® ¢) + ¢ sin? (sin? ¢ + cos® @) + 6% sin? 6]

mi? oo .2 12 2
:T[H (cos® 6 + sin® 6) + ¢* sin” 0]

2 . .
= %(92 + ¢?sin® 0) (14.7)

Using Egs. (14.2) and (14.7), the kinetic energy T of the system in generalized coordinates (7, 8, ¢)
is:

T=T +1T15

12 . .
= |ma’n® + %(92 + ¢*sin? 0)

Problem 15

A point particle moves in space under the influence of a force derivable from a generalized potential
of the form

U(r,v) =V(r)+o.L,

where r is the radius vector from a fixed point, L is the angular momentum about that point, and
o is a vector fixed in space.

(a) Find the components of the force on the particle in both Cartesian and spherical polar coordi-
nates, on the basis of Eq.(1.58).
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(b) Show that the components in the two coordinate systems are related to each other as in Eq.
(1.49).

(c) Obtain the equations of motion in spherical polar coordinates.

Remark: By Egs. (1.49) and (1.58) of the book Classical Mechanics, the author(s) is/are referring
to

Q]:ZFlaqu and

J

oU d (oU
Qj = <

e e respectivel
Og; dt 8qj) PECHVELY

Solution 15: This solution is still in progress. I attempted the follow-
ing approach:

The given generalized potential U can be written as:
Uk, v)=V(r)+mo-(rxv)=V(r)+mr-(vxo)=V(r)+mv- (o xXr) (15.1)

(a) First we find components of force in cartesian coordinates as follows:

0; d <8U> ou

T oat oi; ) Oy
= % [aiz (mo - (r X v))] - V/(T)% — maii (v-(o xr)) (Using Eq. (15.1))
= ﬁ[m(o' xr;)| — V,(r)?z —m(v X o);

=m(o X Vv); — V/(T)% —m(v xa);

= V()= +m((o x V) = (v x o)),

=|2m(o x Vv); — V/(r)ﬁ (15.2)

r

Problem 16

A particle moves in a plane under the influence of a force, acting toward a center of force, whose
magnitude is

where r is the distance of the particle to the center of force. Find the generalized potential that will
result in such a force, and from that the Lagrangian for the motion in a plane. (The expression for
F represents the force between two charges in Weber’s electrodynamics.)
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Solution 16

The force is given by:

1 72 — 2fr
FZw@‘a)

I T SR
2 2 ope?
R S
AR

(1 BN (1,
 or \r  re? dt |or \r rc2

__87U+i 8£ h U— 1+ﬁ
 9r  dt \ or y WHELS &= r  rc?

From Eq. (16.1), we conclude that the generalized potential U is given by:

, 1 72
U(r,r) = <T+’I”C2>

Since the motion is restricted to a plane, we have in polar coordinates (r,6):

dr = 7dr + Ordd
= v =7r + oré

2

= V2 =v.v=7%4120?

Using Eq. (16.3), the kinetic energy T' of the particle will be:
1 2

T =—-muv

1 .
= 577’1/(7"2 + 7“292)

Using Egs. (16.3) and (16.4), the Lagrangian L of the system can be written as:

L=T-U

1 . 1 -2
= 57’71(7’2 + 7”292) — ( —|— T)

r  rc?

Problem 17

(16.1)

(16.2)

(16.3)

(16.4)

A nucleus, originally at rest, decays radioactively by emitting an electron of momentum 1.73 Mev/c,
and at right angles to the direction of the electron a neutrino with momentum 1.00 MeV/c. (The
MeV, million electron volt, is a unit of energy used in modern physics, equal to 1.60 x 1073 J.
Correspondingly, MeV /c is a unit of linear momentum equal to 5.34 x 10722 kg-m/s.) In what
direction does the nucleus recoil? What is its momentum in MeV /c? If the mass of the residual

nucleus is 3.90 x 1072° kg what is its kinetic energy, in electron volts?
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Solution 17

Let us choose 2 dimensional cartesian coordinate system for this problem. Let the nucleus be at
origin. It is given that the nucleus is at rest. Hence, the initial momentum is:

Pinitial = [07 + 03] MeV /¢ (17.1)

Emitted in a radioactive decay, let the electron be travelling along positive z-axis and let the neutrino
be travelling along positive y-axis. When the residual nucleus recoils, let its linear momentum be
Precoil = Pzt + pyj. Hence, using the given data, the final momentum is:

Pfinal = [(1.73 +px)g + (1.00 +py)§'] MeV/c (17.2)

Since there is no external force, all components of the linear momentum are conserved. Hence, using
Eq. (17.1) and Eq. (17.2), we have:

Precoil = [—1.731 — 1.005] MeV /¢ (17.3)

Using Eq. (17.3), the residual nucleus recoils at an angle 7+ 6 with respect to the positive direction
of x-axis, where:

1 o
T+0= [180 + arctan <1 gg)} ~{180.33°

Using Eq. (17.3), we can write:

”precoilH = v/ Precoil * Precoil
= /(~1.73)2 + (—1.00)2 MeV /c

<]

Using given data and Eq. (17.3), we have:

Precoil * Precoil

2m
_ (2173 %534 x107%) + (-1.002 x 5.34 x 10722)?
- 2% 3.90 x 10-25

T —

~1.46 x 10718 ]
1.46 x 10718

=———%¢€

1.60 x 10—19

~[9.12 V]

Problem 18

A Lagrangian for a particular physical system can be written as

/

K
I — %(%2 + 2biy + ci’) — — (ax® + 2bzy + cy?),

2

where a,b and ¢ are arbitrary constants but subject to the condition that b?> — ac # 0. What are
the equations of motion? Examine particularly the two cases a = 0= cand b = 0,¢ = —a. What is
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the physical system described by the above Lagrangian? Show that the usual Lagrangian for this
system as defined by Eq. (1.56) is related to L’ by a point transformation (cf. Derivation 10). What

is the significance of the condition on the value of b? — ac?

Remark: By Eq. (1.56) of the book Classical Mechanics, the author(s) is/are referring to

L=T-V

and by Derivation 10, the author(s) is/are referring to Problem 10.

Solution 18

Using the given Lagrangian L’ in Euler-Lagrange equations, we get the following equations of

motion:

d (oL oL’ —

dat\ay | 9y

If a =0=cin Egs. (18.1) and (18.2), we get:
mi = —Kzx ; my =—Ky
If b=0,c= —a in Egs. (18.1) and (18.2), we get:

mi =—Kx ; my = —Ky

‘i<8ﬂ> aL/—o = | mbi +cj) = —K(bx +cy) |

(18.1)

(18.2)

(18.3)

(18.4)

From Egs. (18.3) and (18.4), we conclude that both sets of condition gives a Lagrangian (and hence
equation of motion) which is associated to the physical system of harmonic oscillation of a particle

of mass m in two dimensions.

We perform the following linear point transformation:
u=azr+by ; v=">bx+cy
Differentiating Eq. (18.5) twice, we get:
u=azx+ by ; U =0+ cy
Substituting Eq. (18.6) in Egs. (18.1) and (18.2), we get:

mii = —Ku ; mv = —Kv

(18.5)

(18.6)

which are the standard equations for two uncoupled identical simple harmonic oscillators. Hence in

(u,v) coordinates the Lagrangian can be written in the usual form

2

M%uum%:%0f+#)—5Xﬁ+w%

which is precisely L =T — V.
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The point transformation (z,y) — (u,v) could be written in the matrix form as: (Z) = (Z Z) <z>

This point transformation is invertible if and only if

a b 9
det =ac—b"#0.
b ¢

Thus the condition b — ac # 0 ensures that the change of variables is a valid point transformation
and the system truly has two independent degrees of freedom (two oscillators). If b2 — ac = 0, the
transformation becomes singular, one linear combination of coordinates disappears, and the system
effectively reduces to a one-dimensional oscillator.

Problem 19

Obtain the Lagrange equations of motion for a spherical pendulum, i.e., a mass point suspended by
a rigid weightless rod.

Solution 19

We will use spherical polar coordinates (7, 8, ¢) for solving this problem. A schematic of the problem
is shown in Figure 3.

Figure 3: Spherical Pendulum

Since the rod is rigid, we have a holonomic constraint r = [, thus reducing the degree of freedom of
the system to two. The system can be described by (6, ¢). In spherical polar coordinates, we have:

dr = épdr + égrdf + é4rsin 0dgo
= v =&7 + ég?”é + é4rsin 0d'>

= v =v-v =72+ 7r26% + r?sin? 0> (19.1)
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The kinetic energy T of the system is given by:

T = §mv2
1 . .
= im(?‘2 + 1r20% 4 r? sin” 0¢?) (Using Eq. (19.1))
1 .. )
= §(l292 + 12 sin” 0¢?) (Using r = [ is a constant)

Using the point of suspension as the reference for potential energy, we have:

V = —mglcos@

Using Egs. (19.2) and (19.3), the Lagrangian L of the system can be written as:

L=T-V
1 : .
= im(l202 + 1*sin? 0¢*) + mgl cos 0

The equations of motion are given by:

d (0L OL

d (9L\ 9L _
i (35) 5 -

(19.2)

(19.3)

(19.4)

(19.5)

(19.6)

Solving Egs. (19.5) and (19.6) using Eq. (19.4) gives us the following two equations of motion

respectively:
. . -
19— 3 sin 20¢° + gsinf = 0 and sin? ¢ = constant
Problem 20
A particle of mass m moves in one dimension such that it has the Lagrangian
2,4
L= mlg” +ma?V(z) — V3(z),

where V' is some differentiable function of z. Find the equation of motion for x(t) and describe the

physical nature of the system on the basis of this equation.

Solution 20

The Euler-Lagrange equation is

a4 fory or_
dt \ 0% or

Substituting the given Lagrangian L in Eq. (20.1), we get:
m2i%E + 2miV (z) — mi?V (z) + 2V (2)V (z) = 0

= [m%i? + 2mV (2)]@ = [ma? — 2V (2)]V (2)

From Eq. (20.2), we can describe the physical nature of the system as follows:

(20.1)

(20.2)
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1. The effective mass depends on both & and x: meg = m2i? + 2mV (z).
2. The effective force is also nonlinear: Fog = [mi? — 2V (x)]V/(x).

3. The motion is not simple harmonic; it involves nonlinear oscillations depending on both ve-
locity and position.

Problem 21

Two mass points of mass mi and mo are connected by a string passing through a hole in a smooth
table so that m rests on the table surface and ms hangs suspended. Assuming msy moves only in
a vertical line, what are the generalized coordinates for the system? Write the Lagrange equations
for the system and, if possible, discuss the physical significance any of them might have. Reduce
the problem to a single second-order differential equation and obtain a first integral of the equation.
What is its physical significance? (Consider the motion only until m; reaches the hole.)

Solution 21

Point mass mj lies on the table which is a two dimensional surface and hence m; can be described
by polar coordinates (r,#) with the origin of coordinate system being at the hole on the table. Point
mass my can move about in a vertical line passing through the hole and downward to the hole. We
can describe mg by y which corresponds to its distance from the hole. Since the string is inextensible
(of length 1), we have a holonomic constraint given by r + y = [. Thus the system has two degrees
of freedom and can be described by (r,6).

The kinetic energy T of the system is:

T=1T +15
1 1
= §m1v% + §m2v%
1 : 1
1 : 1
= §m1(7‘“2 +7%0%) + §m27‘2 (cy=—7) (21.1)

Let us choose the hole on the table as our reference for potential energy. The potential energy V' of
the system is:

V="+V
=0—magy
= —mag(l — 1) (21.2)

Using Egs. (21.1) and (21.2), the Lagrangian £ for the system can be written as:

L=T-V
1 . 1
= o (P2 +20%) + Smai® 4 mag(l ) (21.3)
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Using Eq. (21.3), the Euler-Lagrange Equation can be solved for our generalized coordinates as
follows:

d (0L oL N o
- <07") ~ 5 = 0 = (mq 4+ mo)¥ = myrf° — mogr and (21.4)

d (0L oL 27 _
. <89) ~ 50 = 0 = myr-0 = constant = L (L = angular momentum)  (21.5)

Egs. (21.4) and (21.5) are the equations of motion of the system. Eq. (21.5) says that angular
momentum is conserved. Using Eq. (21.5) in Eq. (21.4), we get:

L2

(my + mo)i = — magr (21.6)

17"3

Thus the problem is reduced to a second order differential equation given by Eq. (21.6). Multiplying
Eq. (21.6) by 7, it can be written as:

.. L% .
(my + mo)ir = " — Mmagrv
d |1 . d L? d 1
% |:2(m1 + m2)7"2:| = % <_217117"2> + % (—2771297‘2) (217)

Upon integrating Eq. (21.7), we get the first integral of Eq. (21.6) as follows:

2

1
Smyr? + §m29r2 = constant = F (E = total energy) (21.8)

1 .
§(M1 + mg)r2 +

Eq. (21.8) is energy conservation equation with effective potential energy Veg(r) being:

L? 1
‘/eff(r) = W + §m2gr2

Problem 22

Obtain the Lagrangian and equations of motion for the double pendulum illustrated in Fig 1.4,
where the lengths of the pendula are [; and l» with corresponding masses mi and mo.

Remark: By Fig. 1.4 of the book Classical Mechanics, the author(s) is/are referring to

Figure 4: Double pendulum.
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Solution 22

Double pendulum in two dimensional vertical plane has four degrees of freedom (two for each mass).
Let the origin of our cartesian coorfinate system be at the point of suspension of first mass. Since
we have two holonomic constraints given by /2?2 +yf = [; and \/(mg —21)%+ (y2 —y1)? = o,
the degrees of freedom of the system reduces to two. We can describe the system in terms of the

generalized coordinates 61 and 6-.
The kinetic energy T of the system is given by:

T=T +1>

1 . . 1 . .
= Smi(@ + 38) + Sma(i + ) (22.1)

Now we compute the velocity components for both the masses as follows:

x1 =1l1sinf = i1 = 0114 cos by (22.2)
y1 = l1 cos 01 = = —041y sin 6, (22.3)
Ty = 1y 5in 0 — Iy sin By = iy =01l cosf) — balycos by (22.4)
Yy = Iy cos 01 + Iy cos Oy = gy = —(01l1sin 6 + Oolysin ) (22.5)

Substituting Eqs. (22.2)-(22.5) in Eq. (22.1), we get:

1 . 1 . . ..
T= §m11%9§ + §m2[z§9§ + 13635 — 201651115 cos(6y + 6)] (22.6)

Let us choose the point of suspension of the first mass as our reference for potential energy. The
potential energy V of the system is given by:

V=Vvi+WV
= —Mm19Yy1 — M2gy2
= —[m1gl1 cos 01 + mag(ly cos Oy + Iy cos 6)] (22.7)

Using Egs. (22.5) and (22.6), the Lagrangian L of the system can be written as:

L=T-V
_ 1 2,2 1 242 2432 AN
= | gmalitt + Smali0] + 1505 — 261620115 cos(6r + 05)] + magh cos 01 + mag(h cos b + Iz cos b2) (22.8)

The two equations of motion of the system are given by:

d (0L oL

d (oL _ oL _ d 22.
o <891> o0, 0 an (22.9)
d (0L OL

— | — ] - — = 22.1

Using Eq. (22.8) to solve Egs. (22.9) and (22.10), we get the following two equations of motion
respectively:

[m1 + mg](l%él + glysinf1) = malylsy [92 cos(f1 + 62) — 9% sin(0; + 62)] and

TTLQ(l%éQ + glg sin 92) = m2l1l2 [91 COS(91 + 92) - Q% sin(@l + 32)]
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Problem 23

Two masses 2kg and 3kg, respectively, are tied to the two ends of a massless, inextensible string
passing over a smooth pulley. When the system is released, calculte the acceleration of the masses
and the tension in the string.

Solution 23

Let the acceleration of the masses and the tension in the string be a and T respectively. The value
of acceleration due to gravity on the surface of the Earth is ¢ = 9.8 m/s?. The schematic of the
problem is shown in Figure 5.

/N

Figure 5: Schematic of Porblem 23

For 2kg mass, the equation of motion is:

T—2g9g=2a = T —19.6 =2a (23.1)
For 3kg mass, the equation of motion is:

3g—T =3a = 294 —-T =3a (23.2)

We have two equations of motion and two constants. Hence the system of equations is deterministic.
Adding Egs. (23.1) and (23.2), we get:

a =1.96 m/s> (23.3)

Substituting Eq. (23.3) in Eq. (23.1), we get:

T =2352N
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Problem 24

A spring of length L, (no tension) is connected to a support at one end and has a mass M attached
at the other. Neglect the mass of the spring, the dimension of the mass M, and assume that the
motion is confined to a vertical plane. Also, assume that the spring only stretches without bending
but it can swing in the plane.

(a) Using the angular displacement of the mass from the vertical and the length that the string has
stretched from its rest length (hanging with the mass M), find Lagrange’s equations.

(b) Solve these equations for small stretching and angular displacements.

(c) Solve the equations in part (a) to the next order in both stretching and angular displacement.
This part is amenable to hand calculations. Using some reasonable assumptions about the
spring constant, the mass, and the rest length, discuss the motion. Is a resonance likely under
the assumptions stated in the problem?

(d) (For analytic computer programs.) Consider the spring to have a total mass m < M. Neglecting
the bending of the spring, set up Lagrange’s equations correctly to first order in m and the
angular and linear displacements.

(e) (For numerical computer analysis.) Make sets of reasonable assumptions of the constants in
part (a) and make a single plot of the two coordinates as functions of time.

Solution 24: This solution is still in progress. I attempted the follow-
ing approach:

The spring-mass system is confined to a two dimensional vertical plane. The system has two degrees
of freedom and we can describe the system in polar coordinates (r, ), where r describes position of
the mass w.r.t the point of suspension and 6 describes the angle the spring makes w.r.t the vertical
axis passing through the point of suspension.

(a) The kinetic energy T' of the system is:

1
T = §M112

1 .
= §M(1'n2 +726?) (24.1)

Let the point of suspension of spring be our reference for potential energy. The potential energy V
of the system is:

1
V = —Mgrcosf + ik(r — L,)? (k = spring constant) (24.2)

Using Egs. (24.1) and (24.2), the Lagrangian L of the system can be written as:

L=T-V
1 . 1
= §M(7‘"2 +1262) + Mgrcos 6 — ik(r — L,)? (24.3)
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Using Eq. (24.3), Euler-Lagrange equation can be solved for our generalized coordinates, yielding
the equations of motion as follows:

d (8L\ 0L L o k

Cu<m>‘m—0 = P et p(r—La) =0 and (244)
d (0L oL - 95 .

o <89> ) =0 = 2r70 + 120 + grsind =0 (24.5)

(b) Let the static equilibrium length of the spring be I. Since § = § = 7 = # = 0 at static
equilibrium, we have using Eq. (24.4):

k M

T l-L)=g = z:gT+La (24.6)
Let the small radial displacement be § = r — [ with § < [. Let the angular displacement 6 be small.
Using these small displacements ¢ and 6 in Egs. (24.4) and (24.5), and then neglecting negligible
terms like 762 and 2776, we get:

.k M
§+--0=0  and ('.'r:5+l:5+97—|—llaand cosf ~ 1) (24.7)
i+20=0 respectively (2= (5 +1)?~1% and sinf ~ 0) (24.8)

l
The solutions for Egs. (24.7) and (24.8) will be:

k
d(t) = Acos(w,t + ¢y) ; wr=\lq37 ¢ = constant and (24.9)
0(t) = Acos(wgt + ¢g) ; wy = % , ¢ = constant respectively (24.10)

Using r(t) = 0(t) + [, Eq. (24.9) can be written as:

k M
r(t) = Acos(wrt + ¢p) +1 ; wr=A\lq ¢r = constant , [ = gT + L,| (24.11)

(c) Using small radial displacement 6 = r — [ with § < [ and small angular displacement and
expanding (24.4) up to quadratic power and neglicting higher power negligible terms, we get:

5—l92—g(c059—1)+ﬁ(§:0 (cr=0+1=1)

= o —16% + g@Q + Mé =0 (neglecting higher order terms in cosine series)
.. 2 g 5 ) B ﬁ

= 0+ wpd =10 20 ; wr =\ q7
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